NEW STRATEGY FOR CHIRAL ALKALOID SYNTHESIS COMMENCING WITH A CARBOHYDRATE.

SIMPLE SYNTHESIS OF (-)-ALLO-YOHIMBANE FROM LEVOGLUCOSENONE

Minoru ISOBE, * Naoki FUKAMI, and Toshio GOTO

Laboratory of Organic Chemistry, Faculty of Agriculture, Nagoya University,

Chikusa, Nagoya 464

An optically active <u>allo</u>-yohimbane was synthesized in 12 steps from levoglucosenone. The key steps are Diels-Alder cycloaddition for the E-ring construction followed by eliminative Wolff-Kishner reduction and selective double cyclization in the D- and C-ring formation.

Synthesis of the optically active natural products from carbohydrates¹⁾ can provide chiral carbon-frameworks in short steps. We would like to describe a general method¹⁾ that constructs pentacyclic skeletons of alkaloids such as <u>allo</u>-yohimbane 1 and reserpine 2: the carbohydrate-strategy summarized in Scheme 1 involving the key steps (1) initial Diels-Alder cycloaddition²⁾ to afford the E-ring, (2) its further functionalization by a cleavage of the notoriously stable 1,6-anhydro pyranoside bridge under eliminative Wolff-Kishner reduction, (3) coupling with tryptamine by amidation, (4) cyclization of D-ring followed by the last cyclization of the C-ring.

Levoglucosenone (1,6-anhydro-3,4-dideoxy- β -D-glycero-hex-3-enopyrano-2-ulose) 3 was chosen as the starting material, since 3 is readily obtained by pyrolysis of cellulose. 3) It undergoes Diels-Alder cycloaddition with 1,3-butadiene (at 140 °C)

for 10 h) to afford the crystalline adduct 4a (mp 66.0 °C) in 98% yield. 4) ketone was reduced in two steps, first by treatment with $NH_2NH_2-H_2O$ (5 equiv.) and ${\rm Et_2N}$ (1 equiv.) (in EtOH at 60 ${\rm ^{O}C}$ for 20 min) affording the hydrazone (4b) which was then treated with sodium hydride in DMSO at rt for 1.5 h to obtain the vinyl ether 5a (PMR δ 4.68(1H, dd, J= 6, 4 Hz), 6.28(1H, dd, J= 6, 1.5 Hz); [α] p $+38.6^{\circ}$ (c 1.00, CHCl₃)) in 93% overall yield. Such an eliminative Wolff-Kishner reduction undergoes at an ordinary temperature rather than at elevated ones and is recently reported by us. 5) Acetylation gave 5b (PMR δ 2.08(3H, s), 4.08(1H, ddd, J = 6.5, 5.0, 4.0 Hz), 4.23(2H, ABX), 4.64(1H, dd, <math>J = 6.0, 3.0 Hz); IR 1740 cm⁻¹) in 100% yield with acetic anhydride (3 equiv.) and pyridine (7 equiv.) in $\mathrm{CH_2Cl_2}$ at rt for 4 h. The vinyl ether 5b was hydrolyzed in a mixture of 1 mol dm $^{-3}$ HCl and THF (1:5) at 50 °C for 2 h and the corresponding hemi-acetal was oxidized with Jones reagent at 0 $^{\circ}$ C for 5 min to give in 90% yield the lactone 6a (mp 77.0 $^{\circ}$ C; [α] $_{D}$ -58.6° (c 1.02, CHCl₃)). A large scale preparation afforded <u>6a</u> (16.7 g) in 63% overall yield in continuous 5 steps from 3 (15 g). The acetate 6a was hydrolyzed with NaOMe (1.2 equiv.) in MeOH at rt for 5 min to give the alcohol 6b (mp 65.0 °C; 86% yield; PMR $^{\delta}$ 1.72-2.42(6H, m), 2.54(2H, ABX), 3.10-3.90(1H, brs, OH), 3.76(1H, dd, J= 12.5, 4.5 Hz), 3.86(1H, dd, J= 12.5, 3.0 Hz), 4.40(1H, brs), 5.66(2H, brs); IR 3600, 3400, 1725, 1655 cm⁻¹; $[\alpha]_D$ +115.2° (c 1.03, CHCl₃)).

The lactone 6b was heated with tryptamine (2 equiv.) in a mixture of THF and ethyldiisopropylamine (6:1) to give 7 (IR 1645 cm $^{-1}$; [α] $_{\rm D}$ +5.1 $^{\rm O}$ (c 0.99, MeOH)) in 96% yield. The glycol 7 was cleaved by oxidation with HIO $_4$ (1.2 equiv.) $^{\rm 8}$) in a mixture of THF and water (3:1) at -20 $^{\rm O}$ C for 1 min to yield the aldehyde 8a. Reduction of 8a with NaBH $_4$ in MeOH (rt, 5 min) gave the amide alcohol 8b [α] $_{\rm D}$ -3.6 $^{\rm O}$ (c 1.00, CHCl $_3$)) in 93% overall yield from the diol 7. The amide alcohol 8b was chlorinated with triphenylphosphine (3 equiv.) and CCl $_4$ in a mixture of CHCl $_3$ and pyridine (2:1) at 55 $^{\rm O}$ C to give the chloride 8c ([α] $_{\rm D}$ -16.6 $^{\rm O}$ (c 1.05, CHCl $_3$)) in 51% yield (75% conversion yield). Since the amide chloride 8c was not stable, it was quickly used for the following basic treatments with lithium bis-(trimethylsilyl)amide in THF at -78 $^{\rm O}$ C. When the reaction temperature was raised gradually to rt, the lactam 9 was produced in 91% yield ([α] $_{\rm D}$ -16.5 $^{\rm O}$ (c 1.12, CHCl $_3$)). Final cyclization $^{\rm 6}$ 1 was achieved in 73% yield by treatment with phosphorus oxychloride at 100 $^{\rm O}$ C for 1.5 h and the reaction mixture was evaporated in vacuo; the residue being reduced with NaBH $_4$ in a mixture of MeOH and water (9:1)

Scheme 1.

a) 1,3-butadiene/140 $^{\rm O}$ C, 10 h, b) NH₂NH₂-H₂O-Et₃N/EtOH/60 $^{\rm O}$ C, 20 min then NaCH₂SOCH₃/DMSO, c) Ac₂O/Py, d) 1N HCl-THF (1:5)/50 $^{\rm O}$ C, 2 h, e) Jones/0 $^{\rm O}$ C, 5 min, f) NaOMe/MeOH, g) tryptamine/i-Pr₂EtN/THF, h) HIO₄, i) NaBH₄, j) Ph₃P-CCl₄/ LiN(SiMe₃)₂, k) POCl₃/100 $^{\rm O}$ C 1.5 h then NaBH₄, 1) H₂/Pd-C.

at pH >7 in an ice-bath to give 10 (PMR & 1.60-2.08(6H, m), 2.30-3.06(8H, m), 3.20(1H, brs), 5.58(2H, brs), 7.08(2H, m), 7.24(1H, m), 7.44(1H, m), 7.68(1H, brs); CMR & 21.9, 25.6, 31.2, 32.0, 32.1, 33.2, 53.1, 60.1, 60.5, 108.1, 110.5, 117.8, 119.9, 123.1, 125.9, 127.4, 135.3, 135.9; IR 3500, 2800, 2750, 1460 cm⁻¹; [α]_D -57.9 (c 1.00, CHCl₃)). Hydrogenation of 10 with 10% Pd-C/H₂ in a mixture of MeOH and CH₂Cl₂ (1:1) afforded (-)-1 in 92% yield; 1 (double mp at 108 °C and at 157 °C; HCl-salt [α]_D -79.9° (c 0.38, EtOH)). The relative and absolute stereochemistry of 1 was confirmed by identifying the final product with the authentic data⁷) (allo-Yohinbane, mp 156 °C, [α]_D -79.2° (c 0.35 EtOH), -166.5° (c 0.4, pyridine), while 3-epi-allo-yohimbane [α]_D +190.4° (c 0.4, pyridine)) and PMR and CD spectra, all of which were identical with those reported values.⁷) The continuous studies on the alkaloid synthesis along this line will be reported.

References

- 1) S. Hanessian, "Total Synthesis of Natural Products, the Chiron Approach," Pergamon Press, London (1983).
- B. Fraser-Reid, M.A. Rahman, D.R. Kelly, and R.M. Srivastava, J. Org. Chem., 49, 1837 (1984); B.F. Molino, L. Magdzinski, and B. Fraser-Reid, Tetrahedron Lett., 24, 5819 (1983); J.L. Primeau, R.C. Anderson, and B. Fraser-Reid, J. Am. Chem. Soc., 105, 5874 (1983).
- 3) F. Shafizadeh and P.P.S. Chin, Carbohydr. Res., <u>58</u>, 79 (1977). We are indebted to Mr. M. Onishi of SHIONO KORYO and Mr. M. Mori of SEMBAI KOSHA for informing us a detail of preparing levoglucosenone from cellulose.
- 4) D.D. Ward and F. Shafizadeh, Carbohydr. Res., 95, 155 (1981); F. Shafizadeh, R.H. Furneaux, and T.T. Stevenson, ibid., 71, 169 (1979); F. Shafizadeh, M. G. Essig, and D.D. Ward, ibid., 114, 71 (1983).
- 5) M. Isobe, Y. Ichikawa, H. Masaki, and T. Goto, Tetrahedron Lett., $\underline{25}$, 3607 (1984).
- 6) E. Wenkert, K.G. Dave, and F. Haglid, J. Am. Chem. Soc., <u>87</u>, 5461 (1965); E. Wenkert and D.K. Roychaudhuri, ibid., <u>80</u>, 1613 (1958); R.B. Woodward, F.E. Bader, H. Bickel, A.J. Frey, and R.W. Kierstead, Tetrahedron, <u>2</u>, 1 (1958).
- 7) L. Bartlett, N.J. Dastoor, J. Hrbek Jr., W. Klyne, H. Schmid and G. Snatzke, Helv. Chim. Acta, <u>54</u>, 1238 (1971); for recent studies on yohimbane ring construction, see S. Chaqo, F-A. Kunng, J-M. Gu, H.L. Herman, and P.S. Mariano, J. Org. Chem., <u>49</u>, 2708 (1984).
- 8) Incidentally, when neat $\frac{8a}{1}$ was kept at rt for 12 h, it was converted into the carbinolamide \underline{A} (mp 141.0 $^{\circ}$ C).

(Received October 18, 1984)